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NON-STEADY-STATE SORPTION PROCESSES IN
MICROHETEROGENEOUS DISPERSED SYSTEMS*

A. Vain UDC 541.182

The article formulates and solves the problem of asymptotic rapid mass transfer in micro-
heterogeneous dispersed systems.

It is accepted practice to characterize steady-state transfer of a dissolved active component (AC)
through a motionless layer of a liquid or solid dispersion by the diffusion coefficient D,. This is formally de-
termined as the material coefficient in Fick's first law J = —D«Vep, where cp is the local concentration of
the AC in the dispersed system. However, experiments with some dispersed systems type molecular sieve
[1, 2] or hard polymers [3] show that Fick's second law V- (D,Vep) = Dicp does not always provide an
adequate description of the non-steady-state sorption processes in dispersed systems. An analogous conclu-
sion was reached in the study of non-steady-state heat exchange in dispersed systems [4]. The deviations are
of relaxational nature. We will henceforth characterize such processes by the material parameters of the dis-
persed system, viz., the relaxation time Ag.

Deviations from the predictions of the classical theory and from the actual occurrence of sorption pro-
cesses may be expected in dispersed systems for which the diffusion coefficient of the dispersed phase is
lower than the diffusion coefficient of the continuous phase, but the sorptivity is concentrated in the dispersed
phase. The deviations are particularly great upon sudden or very rapid (compared with Ag) changes in the
concentrations of the diffusing component in the dispersed system. Relaxation phenomena, noted in molecular
sieves and other solid substances with polydispersed internal structure [1], may manifest themselves in
liquid dispersed systems with analogous properties during rapidly occurring processes of mass transfer,
e.g., in electrochemical measurements of the diffusion coefficients [5] or in their determination by methods
of a free jet, wetted wall [6], or in industrial processes of contacting gases with suspensions.

The present work presents the asymptotic description of very rapid concentration processes in dis-
persed systems, i.e., it examines a special, asymptotic case of more general theories [1, 2]. If was found
that such asymptotic models can be formulated independently of the internal geometric structure of the me~
dium which in the models is represented only by the specific volume of the dispersed phase ¢ and its specific
surface ¥. In view of the variety of physical situations, the transport model for different types of dispersed
systems is presented in a more general form on the basis of the concepts of microheterogeneous dispersed
systems.

Microheterogeneous DispersedSystems. They have an internal structure whose microscopic scale is
fairly large compared with the molecular dimensions. Yet it is still small compared with the typical macro-
scopic dimensions of test specimens [7]. Separate microscopically distinguishable details of dispersed sys~
tems may be viewed as homogeneous volumetric phases of a heterogeneous polyphase system. It is expedient
to study the macroscopic behavior of dispersed systems as one entity by methods of the physics of the contin-
uum. A similar dualism of the physics of the microheterogeneous continuum manifests itself particularly

* Under the editorship of Professor Z. P. Shul'man,

Institute of the Theoretical Foundations of Chemical Processes, Czechoslovak Academy of Science,
Prague, Czechoslovakia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No. 3, pp. 498-506,
March, 1980. Original article submitted January 23, 1979.

0022-0841/80/3803-0295%$07.50 © 1980 Plenum Publishing Corporation 285



distinctly in the fact that an infinitesimal material element or material point of the dispersed system contains
a sufficient number of elements of the microheterogeneous structure, e.g., particles of the dispersed phase,
pores, ete. It is consequently expedient to introduce simultaneously magnitudes of the same type concerning
the individual phases (concentration, diffusion flows, etc.) into the material point. We confine ourselves to the
case of stable, statistically homogeneous and isotropic two-phase dispersed systems with a single continuous
medium in which particles of a homogeneous material are scattered. We will deal with non-steady-~state dif-
fusion of the chemical component (AC) that is present in both phases of the microheterogeneous dispersed
system. The course of non-steady-state diffusion under such conditions is decisively influenced by two funda-
mental processes:

1) the internal transfer of AC between the dispersed and the continuous phases characterized by instan-
taneous local volumetric intensity of the transition into the dispersed phase q within the material element of
the dispersed system;

2) external transfer of AC between adjacent material elements of the dispersed system characterized by
the instantaneous local diffusive. flux J.

The overall content of AC in the dispersed system is characterized by the summary concentration cp,
the full content of AC in the continuous and in the dispersed phases:

ep =9+ (1—9)cp, (1)

where cg, cyp are the concentrations of AC in both phases. For isochoric systems the following local rela-
tionships apply

Dep=—v-d+org+(1—9) rp (2)
(PDtCs=q+fPfs, (3)

where rg, rp are the volumetric production intensities due to the chemical reaction in individual volumetric
phases. The operator of the convective derivative Dt = (8¢ + v+ V) was introduced for a continuum moving at
the local speed v, whichiscommon to the continuous and the dispersed phases.

Mass transfer in the dispersed phase is fully determined by the concentration processes in the vicinity
of the particles. The local instantaneous values of the magnitudes J, q, rF, rg can therefore be determined
from the prehistory of the concentration field cp and the velocity field v in the elementary circle circum-
scribing the material point. In accordance with such a notion it is expedient to unify the relationships (1)-(3)
in the balance of AC for the continuous phase. After J, q, rF are éxpressed by the corresponding definitions,
the balance refers to the sole field cp:

—V-J=(l—cp)Dth—l—q-(l—q))rF. (4)

The influence of the "internal”’ chemical reaction in the dispersed phase is already included in the expression
for the intensity of the internal transfer q.

In the case of a two-phase dispersed system consisting of Fick continua with constant diffusion coef-
ficients Dy, Dg and with constant equilibrium distribution coefficients H,

cg = Hep  (equilibrium), (9)

corresponding to the functional of the memory [8] expressing the dependences of J, q, ry on the prehistory of
the field cg; they are fully determined by the internal geometric structure of the dispersed system and the
material constants Dg, DF, H. We assume that even in the case of deviations from the internal concentration
equilibrium, the external diffusive flux J can be expressed by Fick's first law with an effective diffusion co-
efficient that does not depend on the history of the concentration processes. It is also accepted that in a con-
tinuous medium the resistance to internal transfer of AC may be neglected. For the case of absence of chem-
ical reactions (rg = rg = 0), transport models type (4) in connection with the dynamics of sorption processes
in molecular sieves, bidisperse catalysts [1, 2], hard polymers [3], etc., were formulated and investigated.
The assumption was used that the dispersed phase consists of identical particles with simple shape. We will
deal with asymptotic problems of non-steady~state diffusion without a chemical reaction (rg = rF = 0) when it
suffices to characterize the internal geometry of the dispersed system by two parameters: specific volume
(volumetric fraction) ¢ and specific surface § of the dispersed phase,

Intensity of Internal Transfer of AC. The transition of AC into particles of the dispersed phase depends
on the diffusion resistance of the surrounding continuous medium as well as on the resistance inside the parti-
cle. However, if @ < 1, where
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a = HDyD,, (6)

then the resistance of the continuous medium compared with the internal interphase transfer of AC may be
neglected [9]. The concentration of AC on the surface of the particles is then determined by the equilibrium
relationship (5), and the change in the mean concentration of AC in the particle, in accordance with the classi-
cal theory of non-steady-state diffusion [9], can be expressed by the corresponding Duhamel convolution inte-
gral in dependence on the concentration history in the surrounding continuous medium [2, 9]. For the geome-
trically similar particles in this integral, the relaxation time Ag appears:

As = R%/Ds (7)

as the only characteristic parameter. It is expedient to determine the equivalent particle radius Rg as the
ratio of the volume to the surface of the particles, i.e.,

Rs = /. (8)

The convolution integrals for particles with different shapes have identical asymptotes of very slow and very
fast processes [10, 11]. Asymptotic approximations of the convolution integrals for very fast and slow proces-
ses (comparable with Ag) can be obtained by a formal method [11] or on the basis of physical intuition.

When the changes in concentration on the surface of the particles of the dispersed phase are sufficiently
slow, it may be expected that the equilibrium inside the particles has time to stabilize. Conversely, in very
fast processes, even substantial changes in concentration on the surface of the particles will manifest them~
selves only in a very thin surface layer of the particle. In this case, the particles of the dispersed phase may
be regarded as a semi-infinite space bounded by a plane interphase boundary with surface ¢ in the unit vol-
ume of dispersion [11, 12].

For the volumetric intensity of internal mass transfer of AC between phases in the approximation of
asymptotically slow concentration processes, we may postulate the relationship

q = HDy, (equilibrium asymptote) (92)
and for asymptotically fast processes
g=H\s'/?D;’?¢p  (penetration asymptote) {9b)
where the complex
1
Di'%e =D ([ (t— 97172 fe(9) —c (0)) ds) (16)
0

is the convective modification of the semidifferential operator [11, 12, 13].

Local Diffusive Flux of AC. For the type of dispersed system under examination, it can be shown by the
methods of statistical physics [7] that Fick's first law remains valid under steady-state conditions of the pro-
cess or if local internal equilibrium is maintained between the continuous and the dispersed phases:

J=—D,vc,. (11)

The effective diffusion coefficient Dx depends on the detailed internal geometry of the dispersed system. In
case a < 1, the upper estimate, according to [7], is given by the ratio

D, :.DFA2—2Q)+OL(1—{—2cp) . (12)

2+ ¢-t+a(l—g

In the case of asymptotically fast processes, with @ « 1, the penetration of AC into the particles of the dis-
persed phase may be neglected. From the point of view of the total diffusive flux, the dispersed phase behaves
like impermeable ballast material. In accordance with (12), this position is met by the corresponding asymp-~
tote for o =0, whereas the mean equilibrium concentration for the corresponding steady-state process with
cg = 0 is equal to (1~ ¢)cp:

J = —(1—¢) Dovc,, (13)
o == Dr (1 — @)/(1 + 9/2). (14)

Asymptotic Transport Models. If the local values of cy change so little with time that for equalizing
the concentration field in the particle the internal diffusion suffices,

nglncF|<<}r1, t€<e_"13; e)) (15)
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then we consider such a process asymptotically slow [11]. For such processes, the substitution of the corre-
sponding determining relationships (9a),. (11) into (4) leads to the quasiequilibrium model of diffusion:
Dyv2, = H¢Dic,. ‘ (16)
The parameter
Hy=1—9+oH (17)
is, according to (1), (5), the proportionality factor between ¢y and cp in the state of internal equilibrium:
¢y, = Hycp (equilibrium), (18)

If at the instant t = 0 the external influence manages to disturb the internal equilibrium of the concen-
tration of the dispersed system (cy = cF(0), cg = Hcp(0), t < 0) and if the total time of the process 6 (0 <
t < 0) is very small compared with Ag:

0L ks, (19)

then we consider such processes asymptotically short. Periodic processes whose time interval 0 is very
short compared with the relaxation time Ag are considered asymptotically fast [11]. For asymptotically fast
processes, the substitution of the corresponding asymptotic relationships (9b), (13) into (4) leads to a quasi-
penetration model of diffusion

Dov2cp = Dicp + bhs'/?D}/* ¢p (20)
where the parameter »
b= @H/(1— @) (21)
yields the ratio of the sorptivities of the continuous and the dispersed phases.

According to the assumption, the applicability of the quasipenetration model is limited by the very short
contact time (or very fast periodic processes) § < Ag. In the range of changes of 6, we can distinguish the
following two asymptotic cases: the self-similar braked regime

0 ho (22a)
and the self-similar penetration regime
A &OLAs, B> L, (22b)
where
ho = A/t = (1 — ¢)* (pH) 2 D5 - (23)

In the self-similar braked regime (22a) , the sorptivity of the dispersed phase does not play any role.
The model (20) changes into the well-known form of writing Fick's second law for systems with a ballast dis-
persed phase: D’y = DiCF.

In the self-similar penetration regime (22b) , the sorptivity of the dispersed phase by far exceeds the
sorptivity of the continuous phase. The model (20) assumes the asymptotic form '

(My/* Do) Vicp = Dy/2 cp - (24)

Penetration Experiment. The parameters (D, Hy) and (Dg, A,) may be viewed as structurally deter-
mined material constants. However, it would be more correct to view them as phenomenological coefficients
of the asymptotic transport models (11), (17) or (13), (20), which have to be determined by experiments under
the corresponding kinetic conditions.

Let us examine a penetration experiment of unidimensional non-steady-state sorption of AC into a
motionless semi-infinite space [9] bounded by the plane surface x = 0. Before the experiment begins (t = 0),
the dispersed system is in the state of internal concentration equilibrium that is characterized, e.g., by zero
concentration of AC in both phases of the dispersed system. In consequence of external action, i.e., contact-
ing of the dispersed system at the instant t = 0 with the homogeneous phase containing AC, its concentration
on the surface in the continuous phase changes jumplike from zero to cg = ¢y. The layer of dispersion, 0=
x < h, is so diluted that for the contact time 6 taken into consideration, the penetration of AC does not mani-
fest itself by appreciable changes in concentration at points far from the surface, i.e., .
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W2H /D, =0p> 6. ‘ (25)

The total amount of AC passing during the time of contact into the dispersed system through unit surface is

2]
M(0) = 5 ] 5ol d. (26)

0
The boundary conditions for the concentration field cy = ¢(t, X) can be written in the form

=0 (x>0, t=0), (27a)
CF——>O (x— o0, t=0), {27b)
cp=10 (x="20,{>0). (27c)

With the conditions as specified, the quasilinear model changes into the linear integrodifferential equa-
tion

Daﬁxc:c?,c—{—xo_”z 0,1/2c, (28)

which, with the boundary conditions (27a, b, ¢), can be solved, e.g., by ordinary methods of integral transfor-
mations [13, 14]. The Laplace transform of the function M = M,{0) has the form ’

oo

Mo (p)= { exp(—p) Mo (8) d0 = (1 — ) esDs* p~"* [1 + (hop) ™ /* '/ (29)

0

The inverse transformation leads to a series that converges for every finite 6:

M= M, (©0) = (1—g) c,DM? (46/m)/% A®h); 0L hs, ‘ (30)
where
_ U e NY (V2 qpeep 3 -k—>z1 0.4431TV 2 — ... (31)
A(T)-2n;(k)Tl(2+2 +0. ;
0

and I'(x)is Euler's second integral.

By the method of asymptotic expansion, the inverse transformation of expression (29) can be determined
in the region 6/x; —~ = in the form (30), where

' X o 7 .

AT) = —L aie 2 (1/2 ) T1/4R2p (—————k—)zT”“(0.9643~O.4889T“”2—— i 0D (32)
2 e _k 4 2 )

The shape of the function A(T) in the range of medium values of 9 is shown in Fig. 1.

The quasiequilibrium model (16) , which with the given conditions changes into the parabolic equation

(D, /H ) 0% c = Oy, (33)
leads to the ratio for accumulation of AC

M= M, (0) = c (H.D,)"? 46/)""*; rs K8K Op. (34)

The solutions found for (30) and (34) reveal possible errors in evaluating the effectiveness of the diffu-
sion coefficient with dispersed systems in case the experimental data, obtained for very brief contact, are
processed in accordance with the classical theory from relationship (34). We will examine the case ¢ <« 1,

@ <« 1, when the relationships D, ® Dx & Dy remain valid, and we will assume that the dependence M(0) was
measured in the range of contact time 6 =< A, If we erroneously use relationship (34) instead of (30), we ob-
tain, in evaluating the diffusion coefficient D, the erroneous value

My@© o 1+04029)7° o (35)
derror = o, 45 H ;—#_ (Dolacer:

(D

which in the case of H, > 1 may be as much as one order of magnitude smaller than the accurate value D, =
Dr. Such relaxation effects are encountered in measurements of the diffusion coefficient in dispersed sys-
tems by electrochemical [5] and sorption [6] methods in the range of contact times comparable with Ag. Ac-
cording to data of [1, 14], the range of Ag is very broad: AS€(10_2 sec; 10% sec), and it consequently encom-
passes sorption processes in suspensions running down a wetted wall or in free jets [6].

For the experimental determination of the parameters Dy, A, the self-similar regimes for fast concen-
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Fig. 1. Shape of the function A(T): 1) exact
dependence; 2) asymptote for T 0 accord~
ing to (31); 3) asymptote for T~ = accord-~
ing to (32).

tration processes 0 << Ag are suitable. For the self-similar braking of the regime, the following asymptotic
relationship is valid in accordance with (30) and (31):

M= (1—q) Dy/* 2n /2 9'/% 04 ho» (36a)
whereas according to (30), the self-similar penetration regime is described by the asymptotic relationship

M, (1—q) Di/? 057/ 0¥ 4T (7/4); Mo 0K As. (36b)

In the coordinates log M—1log ¢ these regimes can be easily found, and the evaluations of the corresponding
parameters obtained according to (36a, b). From published data on absorption curves [1] for molecular
sieves, the self-similar penetration regime can be identified as the region of the convex initial course of the
dependence in the coordinates M—6Y2.

Technically interesting could be the application of the relationship (36b) for describing steady-state
sorption of gases in a turbulently moving suspension according to Higby's penetration theory [15]. If the mean
dwelling time of an element of the suspension at the surface ¢ corresponds to the inequalifies A, <& «Ag,
then the non-steady-state diffusion into the element can be described by (36b) . The mean intensity of the flow
of the AC through unit surface of the suspension J, flowing turbulently, can be expressed in accordance with
(36b) by the relationship

J=M@)/8~c (1—q) Dy agt/* g~ 2 (37)

The empirical parameter ¢ depends on the hydrodynamics of the stream of suspension,

NOTATION

AC, diffusing component; b, ratio of the sorptivities of the dispersed and continuous phases; ¢, concen~
tration of the diffusing component of the AC; D, diffusion coefficient of the AC; H, equilibrium distribution
factor of the AC between the dispersed and continuous phases; J, diffusive flux of AC in the dispersed system;
M, accumulation of the AC in the dispersed system per unit contact surface; g, volumetric intensity of internal
exchange of AC; r, volumetric rates of the reaction; t, time; x, distance from the contact surface; I', Euler's
second integral; 4, time of contact; A, diffusion time of the relaxation of the dispersed system; ¢, specific -
volume of the dispersed phase during dispersion (volumetric fraction); ¥, outer specific surface of the dis-
persed phase. Subscripts: D, dispersed system as a continuum; *, slow, quasiequilibrium processes, 6 >
Ag; o, fast, quasipenetrationprocesses, ¢ < Ag; F, continuous phase as a continuum; S, dispersed phase as a
continuum.,
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GAS FLOW IN A CAPILLARY WITH AN
EXTERNAL DISTURBANCE VARYING THE
COEFFICIENT OF MOLECULAR ADHESION

V. V. Levdanskii and O. G. Martynenko UDC 532.63

The effect of change in the molecular adhesion coefficient on mass transfer in a capillary is
studied for the free-molecular gas flow regime.

In recent years the interaction of laser radiation with material, leading to selective occurrence of
many physicochemical reactions, has attracted ever greater interest of scientific investigators [1-3]. Among
such reactions is a wide class of processes which occur on the boundary dividing two media. This class in-
cludes physical and chemical adsorption, heterogeneous catalysis, evaporation from the surface of solids and
liquids, and diffusion in porous bodies. As was noted in [1], a correct understanding of the mechanisms by
which they occur is extremely important for laser control of processes occurring on the surface of solids,
Using the molecular-kinetic approach, the present study will consider certain questions related to the action

of an external disturbance (in particular, laser radiation) on mass transfer in a capillary in the free-molecu-~
lar gas flow regime.

As was noted in [1, 2] there are two possible variants of laser action on heterogeneous processes: 1)
the radiation acts directly on the phase boundary and the molecules adsorbed thereon (the beam is incident on
the surface) ; 2) the radiation acts upon the gas near the surface (the beam is parallel to the surface).

In the first case, aside from such possibilities as desorption stimulated by radiation and surface mo-
bility of adsorbed molecules, one must also consider the possibility of direct radiation action on the adsorbent
(producing changes in its catalytic properties, heating, etc.). Since clarificationofall possible details of laser
action on the material is quite difficult, in the first approximation we should select some parameters which
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